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Option Pricing with Finite
Elements

including proofs for error bounds, convergence, and stability. Nowadays,
there are FE approaches for virtually any mathematical or physical prob-
lem that can be described with equations of calculus, i.e. differential,
integral, integrodifferential, and variational equations.

In the late 1990’s the first applications of FEs to option pricing prob-
lems were delivered by the two PhD theses [Tomas, 1996] and [Jackson,
1999]. Both publications do not solve directly the Black-Scholes PDE but a
transformation. This way, the applicability to real-world problems is
somewhat reduced since discrete dividends, discrete fixings, etc. cannot
usually be integrated into the transformed pricing equation. In the fol-
lowing, several papers were published using FE for various pricing prob-
lems: Term structure models [Topper, 1998], passport options [Topper,
2001a], reverse convertibles [Topper, 2001b], convertibles ([Barone-Adesi
et al., 2003], [Ouachani04 and Zhang, 2004]), and various exotic options
([ Jackson and süli, 1997], [Topper, 2000], [Pooley et al., 2000] [Forsyth et
al., 1999]). The reader interested in how FEs work is referred to [Topper,
2005]; the reader interested in why these methods work, should look up
[Alberty, 2004].

1 Introduction
Finite Differences (FD) were already in use by Newtown, Leibnitz and
other early developers of calculus. A paper by Courant [Courant, 1943] is
generally considered the starting point of Finite Elements (FEs), although
some building blocks of the FE method can be traced back much earlier
as to the work of Schellbach, Ritz, Galerkin and some others. The
Courant paper had little influence at that time since computers were not
readily available. This changed in the 1950’s and structural engineers
soon realized to use the new computing power for their discretization
methods in which a structure is envisaged as divided into elements with
locally defined stresses and strains. Pioneering works of this age are
[Turner et al., 1956] and [Argyris, 1955]. The expression Finite Elements has
been coined by [Clough, 1960]. In 1965 it was realized, that FE could be
employed to all field problems that could be formulated as variational
problems [Zienkiewicz and Cheung, 1965]. From then on FE conquered
many other fields of natural science and engineering other than struc-
tural analysis. In parallel, the mathematical foundations were developed
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Before going into the details of the FE method the author wants to
outline succinctly its advantages:

• A solution for the entire domain is computed, instead of isolated
nodes as in the case of FD.

• The boundary conditions involving derivatives are difficult to han-
dle with FD. Neumann conditions, however, are often easier to
obtain than Dirichlet conditions when estimating the behaviour
of the option as the price of the underlying goes to infinity. FE
techniques easily can incorporate boundary conditions involving
derivatives.

• In addition, FE can easily deal with high curvature. In most FE codes
this is achieved by adaptive remeshing, a technique well-developed
in theory and in practice. 

• The irregular shapes of the PDE’s domain can easily be handled,
while in a FD setting the placing of the gridpoints is difficult. These
irregular domains arise naturally when knock-out barriers are
imposed on a multiple-asset option. Irregular shapes can also arise
when only parts of the PDE’s domain are to be approximated numer-
ically because some parts can be determined by financial reasoning.
Irregular domains also arise in the pricing of convertible bonds
[Ouachani and Zhang, 2004].

• Most academic papers are concerned with pricing only while the
majority of practioners are at least as much interested in measures of
sensitivity to those prices. Some of these measures of sensitivity,
commonly called Greeks, can be obtained more exactly with FE.

• Many FE codes (such as PDE2D, used for this paper) allow local refine-
ment. This allows precise local information without having to solve
the problem with higher accuracy on the entire domain. PDE2D also
employs adaptive remeshing. This feature automatically leads to
local refinement in areas of high curvature, for example near to the
strike price or close to the barrier.

• FE can easily be combined with infinite elements or boundary ele-
ments for the treatment of (semi-)infinite domains. This is common
practice in engineering while in finance usually artificial boundary
conditions are introduced.

These advantages come at the cost of a more complicated method
compared to FD. In the next section a brief but also easy-to-read presenta-
tion of the FE method will be delivered. Some examples demonstrate the
usefulness of FE for financial problems.

2 The Method of Finite Elements
Problems arising in option pricing are usually of the form

ut = L[u] − f (1)

with L[u] being a differential operator of second order. Following the
engineering terminology we call such problems dynamic in contrast to
problems such as L(u) − f = 0 which are labelled static. Most pricing

problems are dynamic with the exception of some perpetual options,
which can be priced using static models [Lipton, 2001]. Static problems
also arise in the context of computing steady-state distributions and
first exit times. We follow the common practice to discretize the spatial
variables with FE and time (to maturity) with FD, i.e. at this point we
will not discuss space-time-elements, which -at least to the knowledge of
the author- have not been applied to option pricing problems in the
public domain literature. All FE methods in use today belong to the
Method of Weighted Residuals (MWR). This method will be explained with
the help of a static problem in one variable x.

The first step of a FE approach is to subdivide the domain � into non-
overlapping sub-domains. Besides, the finite elements need to cover the
domain completely. In 1D problems this is reduced to divide a straight
line into intervals as in fig. 1.

The approximate solution ũ (also called interpolation function) is to be of
the following form:

ũ =
N+1∑
i=1

ũiφi (2)

The φi are called shape functions, basis functions, or trial functions. The choice
of appropriate shape functions depends on various criteria, such as the
order of the differential equation at hand and the order of the derivative
of the approximate solution needed. The weights ũi are to be determined
by the numerical algorithm in a way such that u ≈ ũ. This is made more
precise by introducing the residual R = L(ũ) − f , which is to be mini-
mized. This can be accomplished in various fashions. Since there are
N + 1 unknowns, also N + 1 equations need to be established to deter-
mine them: ∫

�

RWj dx
!=0 ∀ j = 1, . . . , N + 1 (3)

Inserting the definition of the residual into eq. (3):∫
�

(L(ũ) − f )Wj dx = 0 ∀ j = 1, . . . , N + 1 (4)

⇔
∫

�

L(ũ)Wj dx =
∫

�

f Wj dx ∀ j = 1, . . . , N + 1 (5)

For linear operators, L(·) on the left side of eq. (5) simplifies to:∫
�

L

(∑
i

ũiφi

)
Wj dx =

∫
�

∑
i

ũiL (φi) Wj dx =
∑

i

ũi

∫
�

L (φi) Wj︸ ︷︷ ︸
=Kij

dx (6)
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Figure 1: Discretization of a 1D problem



4 Wilmott magazine

The right side of eq. (5) can be rewritten as:

F =




∫
�

f W1 dx

...∫
�

f WN dx∫
�

f WN+1 dx




(7)

so that the FE solution of a linear differential equation reduces to solving
a system of linear equations given by:

K~u = F (8)

The discussion is not complete at this point. Nothing has been said about
the BC so far. Also, the weighting functions need to be specified. Popular
choices are:

• The Galerkin Method: The weighting function is given by Wi(x) = φi(x)
so that: ∫

�

R(x, ~u)φi(x)dx
!= 0 ∀i (9)

i.e. the appropriate weighting function is the shape function φi . The
Galerkin method is very popular in engineering because it produces the
same solution as the Ritz variational method when using the same trial
function. This is of little relevance in financial applications since hardly
any problem is self-adjoint so that an equivalent formulation as a prob-
lem from the realms of calculus of variations is not possible. However,
most applications of FE in finance have so far applied the Galerkin crite-
rion. The most striking advantage of the Galerkin method is that it pro-
duces nicely structured matrices, which can quickly be solved with
appropriate solvers. The Galerkin approach also has a distinct disadvan-
tage. It can be applied only to problems which can be stated in divergence
form, i.e.

L[u] =
n∑

i,k=1

(aikui)k +
n∑

i=1

biui + cu (10)

Not all pricing problems can be cast into this format, such as the
Hamilton-Jacobi-Bellmann equations arising in the pricing of passport
options or optimal portfolios.

• The Collocation Method: Wi(x) = δ(x − xi) (with δ being the Dirac delta
function) so that∫

�

R(x, ~u) δ(x − xi) dx
!= R(xi; ~u) ∀i (11)

In principle, the collocation points can be positioned anywhere in the
domain (including the boundary) not necessarily following a particular

pattern. In practice, the collocation method is usually used in combina-
tion with Hermite basis functions which make the Gauss integration
points the best choice for the collocation points.

• The Least Square Method:

∂

∂ ũi

∫
�

[R(x, ~u)]2 dx
!= 0 ∀i (12)

Because of Leibnitz’s rule, this is equivalent to:∫
�

R(x, ~u)
∂

∂ ũi
R(x, ~u)︸ ︷︷ ︸

=Wi(x)

dx
!= 0 ∀i (13)

The Least Square FE method offers some advantages when dealing with
convection-dominated problems. For details see ([Jiang, 1998]; [Topper,
2005], sec. 4.6.4).

What is the reason of choosing shape function with local support?
The MWR can be employed to shape functions with global support as
well. However, the solution of the resulting systems of equations becomes
increasingly difficult to solve. In the linear case the system (8) becomes
ill-conditioned as the number of parameters of a global shape function
increases. This problem is circumvented by employing shape functions
restricted to finite elements of the (spatial) domain.

Integrating time into this framework is established via semidis-
cretization, i.e. employing an interpolation function of the following
form:

ũ(x, t) =
N+1∑
i=1

ũi(t)φi(x) (14)

Semidiscretization can be applied to any member of the MWR family.
This will be demonstrated by employing it to a parabolic differential
equation (including the Black-Scholes model and the Vasicek model as
special types):

u̇ = a0u′′ + a1u′ + a2u + f (15)

We assume that both boundary conditions are given as mixed conditions
at xmin and xmax .

α1u(xmin ) + β1u′(xmin ) = γ1 (16)

α2u(xmax ) + β2u′(xmax ) = γ2 (17)

To render the problem well-posed an IC is needed as well:

u(t0, x) = u0(x) (18)

First we develop a Galerkin FE model with a linear shape function:

ũ(x, t) =
N+1∑
i=1

ũi(t)ni(x) (19)
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with:

ni(xj) = 1 ∀ i = j (20)

ni(xj) = 0 ∀ i = j (21)

The function ni has only local support. It equals one at node i and vanish-
es at every other node. The residual is defined as above:

R(x, t, ũ1, . . . , ũN+1) = (a0 ũ′)′ + (a1 − a′
0)ũ

′ + a2 ũ + f − ũt (22)

The Galerkin criterion requires:∫ xmax

xmin

R nk dx
!= 0 ∀ k = 1, . . . , N + 1 (23)

⇔
∫ xmax

xmin

[
(a0 ũ′)′ + (a1 − a′

0)ũ
′ + a2 ũ + f − ũt

]
nk dx

!= 0 ∀ k = 1, . . . , N + 1
(24)

Integrating the first term to eliminate the second order derivative:∫ xmax

xmin

(a0 ũ′)′ nk dx = [
a0 ũ′nk

]xmax

xmin −
∫ xmax

xmin

a0 ũ′ n′
k dx (25)

= [
a0 ũ′(xmax )nk(x

max )
] − [

a0 ũ′(xmin )nk(x
min )

] −
∫ xmax

xmin

a0 ũ′ n′
k dx

= a0nk(x
max )

[
γ2 − α2u(xmax )

β2

]
− a0nk(x

min )

[
γ1 − α1u(xmin )

β1

]

−
∫ xmax

xmin

a0 ũ′ n′
k dx

Inserting the above result in eq. (24) leads to:∫ xmax

xmin

[
a0 ũ′n′

k − (a1 − a′
0)ũ

′nk − a2 ũnk − fnk + nk
˙̃u
]

nk dx

!= a0nk(x
max )

[
γ2 − α2u(xmax )

β2

]
− a0nk(x

min )

[
γ1 − α1u(xmin )

β1

]
∀ k = 1, . . . , N + 1 (26)

Next we consider only the LHS. Inserting eq. (19) into eq. (26) results in:

∫ xmax

xmin

[
a0n′

k

(
N+1∑
i=1

ũin
′
i

)
− (a1 − a′

0)nk

(
N+1∑
i=1

ũin
′
i

)

−a2nk

(
N+1∑
i=1

ũini

)
− fnk + nk

(
N+1∑
i=1

˙̃uini

)]
dx

=
N+1∑
i=1

[∫ xmax

xmin

(
a0n′

kn′
i − (a1 − a′

0)nkn′
i − a2nkni

)
dx

]
ũi

+
N+1∑
i=1

[∫ xmax

xmin

(nkni) dx

]
˙̃ui −

∫ xmax

xmin

nk f dx

Inserting the above result into eq. (26) leads to:

N+1∑
i=1

[∫ xmax

xmin

(
a0n′

kn′
i − (a1 − a′

0)nkn′
i − a2nkni

)
dx

]
ũi

+ δkN+1
α2

β2
ũN+1 − δk1

α1

β1
ũ1

+
N+1∑
i=1

[∫ xmax

xmin

(nkni) dx

]
˙̃ui =

∫ xmax

xmin

nkf dx + δkN+1
γ2

β2
− δk1

γ1

β1
ũ1

∀ k = 1, . . . , N + 1

(27)

⇔ A~u + B~̇u = q (28)

In order to solve the system of initial value problems (28), a starting value
~u = ~u0 (0) for each ODE is needed. These starting values are obtained by
discretizing the initial condition eq. (18) associated with the PDE under
inspection.

This approach cannot deal with Dirichlet conditions, i.e. β1 = 0 or
β2 = 0. The Dirichlet BC is enforced with a constraint. Let us consider the
case of one Dirichlet condition which is located at xmin . Eq. (28) written
out in full reads:

a11 ũ1 + a12 ũ2 + a13 ũ3 + · · · + b11
˙̃u1 + b12

˙̃u2 + b13
˙̃u3 + · · · = q1(t) (29)

a21 ũ1 + a22 ũ2 + a23 ũ3 + · · · + b21
˙̃u1 + b22

˙̃u2 + b23
˙̃u3 + · · · = q2(t) (30)

a31 ũ1 + a32 ũ2 + a33 ũ3 + · · · + b31
˙̃u1 + b32

˙̃u2 + b33
˙̃u3 + · · · = q3(t) (31)

...

The first equation of the above system is replaced by the Dirichlet BC:

α1 ũ1 = γ1(t) (32)

a21 ũ1 + a22 ũ2 + a23 ũ3 + · · · + b21
˙̃u1 + b22

˙̃u2 + b23
˙̃u3 + · · · = q2(t) (33)

a31 ũ1 + a32 ũ2 + a33 ũ3 + · · · + b31
˙̃u1 + b32

˙̃u2 + b33
˙̃u3 + · · · = q3(t) (34)

...

In short, the constrained set of equations can be written as:

M~̇u + K~u = f (35)

The numerical solution of the above system of ordinary initial value
problems is usually achieved with FE. Note, that systems resulting from
FE dicretizations tend to be stiff.

As a second example, the collocation FE method without specifying a
shape function is discussed. The collocation method requires that the
interpolation function and its derivatives replace the function u to be
approximated. Inserting the derivatives of the basis function (14) into the
parabolic PDE (15) without Neumann conditions leads to the following
system of ODEs:

N+1∑
i=1

˙̃ui(t)φi(xj) = a0

N+1∑
i=1

ũi(t)φ
′′
i (xj) + a1

N+1∑
i=1

ũi(t)φ
′
i (xj) + a2

N+1∑
i=1

ũi(t)φi(xj) + f
(36)

=
N+1∑
i=1

[a0φ
′′
i (xj) + a1φ

′
i (xj) + a2φi(xj)]ũi(t) + f (37)

TECHNICAL ARTICLE 1
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for j = 1, . . . , N + 1. In order to change this expression to matrix nota-
tion, we define the following (N + 1) × (N + 1) matrices:

M = [φi(xj)](ji) (38)

N = [a0φ
′′
i (xj) + a1φ

′
i (xj) + a2φi(xj)](ji) (39)

Eq. (36) can then be rewritten as:

M~̇u = N~u + f (40)

Note, that the above system consists of initial value ODEs just as the
semidiscretization of a parabolic PDE with the Galerkin method; com-
pare system (35). The integration of the Dirichlet BC is the same as in the
Galerkin method. The first line and last line of the system (40) is replaced
by the BC as in eq. (29) to (34).

3 Examples
3.1 A European Put
All examples in this paper have been computed with PDE2D, a FORTRAN-
based PDE solver developed by Granville Sewell and described in [Sewell,
2000].

As a first example the author presents the Black-Scholes model for
plain vanilla European put with the market data given in table 1. The
numerical values in the first scenario have been achieved with 100 ele-
ments of equal length using cubic Hermite basis functions and a colloca-
tion FE approach. Also, 100 time steps of equal length are chosen employ-

ing the backward Euler method. The second scenario uses 200 elements
of the same type and an adaptive backward Euler scheme using 163 time-
steps. The following boundary conditions are employed:

V(0) = e−r(T−t)E (41)

V(100) = 0 (42)

In the second scenario, the discretization leads to an approximation
error beyond the fourth decimal digit as reported in table 2.

3.2 An American Put
There are various techniques to integrate early exercise into the Black-
Scholes model. One especially suited method within the FE framework is
to augment the Black-Scholes PDE by a penalty function [Zvan et al.,
1998]:

∂V

∂ t
+ 1

2
σ 2S2 ∂2V

∂S2
+ (r − D)S

∂V

∂S
− rV + (

cpenalty {min [V − max(E − S, 0), 0]}2
) = 0

(43)

Also one of the two boundary conditions has to be changed to V(0) = E.
The constant cpenalty is set to cpenalty = 10, 000. The discretization is the
same as in the scenarios from sec. 3.1. The nonlinear system to be solved
at each time-step resulting from the nonlinear PDE (43) is solved with a
variant of the Newton method. Using the same market data as above we
achieve the results reported in table 3. The adaptive time-steps in the sec-
ond scenario consumes 166 time-steps. Since no analytical solution is
available, a trinomial tree (with 100 steps) as implemented by [Haug,
1997] is used as a benchmark.

A Basket Option
No closed-form solution for the option on a portfolio of assets is known
in the Black-Scholes setting. As an example a two-asset basket put option
with market data as given in table 4 is computed. The FE computations
are compared to Monte Carlo results which were achieved with 100,000
simulations employing a simple antithetic technique. The FE discretiza-
tion employs are regular triangularization as plotted in fig. 2. A Galerkin
approach with elements of degree 3 are used. The contour plot fig. 3

Parameter Symbol Value 
Strike price E 40 
Interest rate r 0.1  
Volatility σ 0.2   
Maturity T 0.5 year

TABLE 1: DATA FOR A PLAIN
VANILLA PUT

TABLE 2: RESULTS FOR A PLAIN VANILLA PUT

Underlying Analytical Analytical Scenario 1 Scenario 2
Premium � FE-Premium FE-� FE-Premium FE-�

35 3.9318 –0.6985 3.9334 –0.6994 3.9318 –0.6985
37 2.6811 –0.5505 2.6806 –0.5515 2.6811 –0.5505
39 1.7292 –0.4031 1.7273 –0.4036 1.7292 –0.4031
41 1.0557 –0.2746 1.0533 –0.2746 1.0557 –0.2746
43 0.6114 –0.1747 0.6094 –0.1743 0.6114 –0.1747
45 0.3370 –0.1044 0.3358 –0.1039 0.3370 –0.1044
47 0.1774 –0.0588 0.1770 –0.0585 0.1774 –0.0588
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Under- Trinomial Trinomial Scenario 1 Scenario 2
lying Premium � FE-Premium FE-� FE-Premium FE-�
35 5.0000 –1.0000 4.9939 –0.9987 4.9941 –0.9970 
37 3.2453 –0.7411 3.2441 –0.7360 3.2461 –0.7343 
39 2.0209 –0.5054 2.0154 –0.5026 2.0195 –0.5022 
41 1.2008 –0.3186 1.1959 –0.3259 1.2000 –0.3262 
43 0.6822 –0.2026 0.6778 –0.2001 0.6807 –0.2006 
45 0.3692 –0.1245 0.3675 –0.1164 0.3692 –0.1196 
47 0.1914 –0.0613 0.1913 –0.0643 0.1919 –0.0647 

TABLE 3: RESULTS FOR A AMERICAN PUT

Figure 2: Triangulation of spatial domain of a basket option

Figure 3: Contour plot of the spatial domain of a basket option

TABLE 4: DATA FOR A CALL ON A BASKET

Parameter Value 

First asset price 18

Weight first asset 1
Second asset price 20
Weight second asset 1 
Strike price 40 
Interest rate 0.1
Dividend Yields 0.0
Correlation 0.5

TABLE 5: RESULTS PUT OPTION ON A BASKET

Volatility Time to Maturity
σ 2

1 σ 2
2 0.05 0.5 0.95

1.8044 0.9599 0.6015 MC
0.1 1.8065 0.9543 0.6043 FEM

1.8354 1.4825 1.2453 MC
0.1 0.2 1.8341 1.4764 1.2405 FEM

1.9109 2.0087 1.9225 MC
0.3 1.9138 2.0187 1.9270 FEM

1.8271 1.4120 1.1607 MC
0.1 1.8275 1.4127 1.1601 FEM

1.8859 1.8835 1.7758 MC
0.2 0.2 1.8856 1.8833 1.7754 FEM

1.9816 2.3941 2.4389 MC
0.3 1.9830 2.3942 2.4389 FEM

1.8906 1.8941 1.7649 MC
0.1 1.8915 1.8948 1.7647 FEM

1.9683 2.3301 2.3557 MC
0.3 0.2 1.9687 2.3298 2.3555 FEM

2.0739 2.8112 2.9985 MC
0.3 2.0747 2.8119 2.9979 FEM
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results from triangles of degree 3 and σ1 = σ2 = 0.1. Time integration is
achieved with a backward Euler scheme using 200 time steps. The fol-
lowing boundary conditions are chosen:

V(0, S2, τ ) = BS-price of put on S2 (44)

V(S1, 0, τ ) = BS-price of put on S1 (45)

V(100, S2, 0) = 0 (46)

V(S1, 100, 0) = 0 (47)
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